

10th International Congress of Serbian Society of Mechanics

Niš, Serbia, June 18-20, 2025

Xingcheng Gan, Ph.D.

Hosted by the Serbian Society of Mechanics at the Faculty of Mechanical Engineering and the Faculty of Civil Engineering and Architecture, University of Niš

Short Professioal details and affiliation:

Dr. Xingcheng Gan is a Lecturer at National Research Center of Pumps, Jiangsu University, China. His research encompasses hydraulic optimization of pumps, energy-efficient pump systems, computational-intelligence algorithms, and AI-driven design for fluid machinery. He earned his Ph.D. in Fluid Machinery from Jiangsu University and has authored more than 30 peer-reviewed publications.

Invited lecture Enhanced Intelligent Strategies for Energy-Efficiency Improvement in Centrifugal Pump Systems

Abstract: Rapid population growth and accelerating economic activity are intensifying pressure on energy supplies and the environment. Because centrifugal pumps alone consume roughly 17 % of global electricity, improving their efficiency is pivotal. Current approaches focus either on enhancing pump hydraulics to widen the high-efficiency operating region or on deploying intelligent system control to keep pumps within that region; however, rising expectations for energy performance and reliability have transformed these tasks into multi-objective, multi-parameter global optimization problems demanding superior modeling fidelity and algorithmic power. This study meets those demands by integrating AI-augmented numerical modeling—bolstering predictive accuracy, particularly under off-design conditions—with a deeply refined swarm-intelligence algorithm that accelerates convergence while maintaining robustness and effectiveness. Case studies demonstrate that the proposed framework can cut energy consumption by up to 70 %, preserve system stability, and outperform conventional single-variable control schemes, confirming its broad applicability and advantage for large-scale pump-system optimization.